The Japan Academy

Personal Information






Section II, Seventh Subsection

Date of Election



Molecular Cell Biology

Selected Bibliography

  1. Hirokawa, N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94(1): 129-142, 1982.
  2. Hirokawa, N., K.K. Pfister, H. Yorifuji, M.C. Wagner, S.T. Brady, and G.S. Bloom. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell  56(5): 867-878, 1989 (Cover)
  3. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa.  Kinesin family in murine central nervous system. J Cell Biol 119(5): 1287-1296. 1992.
  4. Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79(7): 1209-1220. 1994.
  5. Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell  81(5): 769-780, 1995. (Cover)
  6. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350): 519-526, 1998. (Cover)
  7. Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93(7): 1147-1158, 1998.
  8. Nonaka, S., Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, and N. Hirokawa. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell  95(6): 829-837, 1998.
  9. Okada, Y., and N. Hirokawa. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science  283: 1152-1157, 1999.
  10. Setou, M., T. Nakagawa, D.H. Seog, and N. Hirokawa. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science  288(5472): 1796-1802, 2000. (Cover)
  11. Kikkawa, M., Y. Okada, and N. Hirokawa. 15 Angstrom Resolution Model of the Monomeric Kinesin Motor, KIF1A. Cell 100: 241-252, 2000.
  12. Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105(5): 587-597, 2001 (Cover)
  13. Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa.  All kinesin superfamily protein, KIF, genes in mouse and human. P N A S  98(13): 7004-7011, 2001.
  14. Kikkawa, M., E.P. Sablin, Y. Okada, H. Yajima, R.J. Fletterick, and N. Hirokawa. Switch-based mechanism of kinesin motors. Nature  (Article)411(6836): 439-445, 2001.
  15. Setou, M., D.-H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature  417(6884): 83-87, 2002.
  16. Homma, N., Y. Takei, Y. Tanaka, T. Nakata, S. Terada, M. Kikkawa, Y. Noda, and N. Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114: 229-239, 2003.
  17. Nitta, R., M. Kikkawa, Y. Okada, and N. Hirokawa. KIF1A alternately uses two loops to bind microtubules. Science 305: 678-683, 2004.
  18. Kanai, Y., N. Dohmae, and N. Hirokawa. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule.  Neuron  43: 513-525, 2004.
  19. Hirokawa, N. and R. Takemura. Molecular motors and mechanisms of directional transport in neurons. Nature Rev Neurosci 6: 201-214, 2005.
  20. Tanaka, Y., Y. Okada, and N. Hirokawa. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature (Article) 435:172-177, 2005.
  21. Hirokawa, N., Y. Tanaka, Y. Okada and S. Takeda. Nodal flow and the generation of left-right asymmetry. Cell 125(1): 33-45, 2006.
  22. Midorikawa, R., Y. Takei, and N. Hirokawa. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125: 371-383, 2006
  23. Guilaud, L., R. Wong and N. Hirokawa. Disruption of KIF17-Mint1 interation by CamKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biol 10 (1): 19-29, 2008.
  24. Niwa, S., Y. Tanaka and N. Hirokawa. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biol 11: 1269-1276, 2008.
  25. Hirokawa, N., Y. Noda, Y. Tanaka, and S. Niwa. Kinesin superfamily motor proteins and intracellular transport. Nature Rev Mol Cell Biol 10: 682-696, 2009. (Cover)
  26. Zhou, R. S. Niwa, N. Homma, Y. Takei, and N. Hirokawa. KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139: 802-813, 2009.
  27. Hirokawa, N., R. Nitta and Y. Okada. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A.  Nature Rev Mol Cell Biol 10: 877-884, 2009. (Cover)
  28. Hirokawa, N., S. Niwa and Y. Tanaka. Molecular motors in neurons: Transport mechanisms and roles in brain function, development and disease. Neuron  68: 610-638, 2010.
  29. Yin, X., Y. Takei, M. Kido and N. Hirokawa. Molecular motor is fundamental for memory and learning via differential support of synaptic NR2A.2B levels. Neuron  70: 310-325, 2011.
  30. Nakata, T., S. Niwa, Y. Okada, F. Perez, and N. Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol  194: 245-255, 2011.
  31. Nakajima, K., X. Yin, Y. Takei, D-H. Seog, N. Homma, and N. Hirokawa. Molecular motor KIF5A is essential for GABA A receptor transport and KIF5A deletion causes epilepsy.  Neuron  76: 945-961, 2012.
  32. Niwa, S., K. Nakajima, H.Miki, Y. Minato, D. Wang, and N. Hirokawa.  KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell  23: 1167-1175, 2012. (Cover)
  33. Yang, W., Y. Tanaka, M. Bundo, and N. Hirokawa.  Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells.  Dev Cell  31 (2): 202–214, 2014. DOI:
  34. Ichinose, S., T. Ogawa, and N. Hirokawa. Mechanism of Activity-dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa.  Neuron  87: 1022–1035, 2015.  DOI:10.1016/j.neuron.2015.08.008
  35. Tanaka, Y., S. Niwa, M. Dong, A. Farkhondeh, Li. Wang, R. Zhou, and N. Hirokawa. The molecular motor KIF1A transports the trkA neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90: 1215-1229, 2016
  36. Morikawa, Mo., Y. Tanaka, H-S. Cho, M. Yoshihara, and N. Hirokawa. The molecular motor KIF21B mediates synaptic plasticity and fear extinction by terminating Rac1 activation.  Cell Rep 23: 3864-3877, 2018.
  37. Alsabban AH., Mo. Morikawa, Y. Tanaka, Y. Takei, and N. Hirokawa.  Kinesin Kif3b mutation reduces NMDAR subunit NR2A trafficking and causes schizophrenia-like phenotypes in mice. EMBO J.  2019 Nov 20:e101090. doi: 10.15252/embj.2018101090. [Epub ahead of print]
  38. Iwata S.,Mo. Morikawa, Y. Takei, and N. Hirokawa. An activity-dependent local transport regulation via degeneration and synthesis of KIF17 underlying cognitive flexibility. Science Adv. 2020; 6:eabc8355(published on line: 16 Dec 2020)
  39. Yoshihara, S.Xu, Jiang, Mo. Morikawa,-----------and N. Hirokawa. Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Rep 35, 108971, April 13, 2021 https://doi.prg/10.1016/j. celrep.2021. 108971
  40. Morikawa ,M, N.U Jerath, T. Ogawa, Mo. Morikawa, Y. Tanaka, M.E. Shy,S. Zuchner, and N. Hirokawa. A neuropathy-associated kinesin KIF1A mutation hyperstabilizes the motor-neck interaction during the ATPase cycle. EMBO J. 2022 doi:10.15252/embj. 2021108899