Personal Information
Name
HIROKAWA Nobutaka
Section
Section II, Seventh Subsection
Date of Election
2004/12/13
Speciality
Molecular Cell Biology
Selected Bibliography
- Hirokawa, N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94(1): 129-142, 1982.
- Hirokawa, N., K.K. Pfister, H. Yorifuji, M.C. Wagner, S.T. Brady, and G.S. Bloom. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56(5): 867-878, 1989 (Cover)
- Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. Kinesin family in murine central nervous system. J Cell Biol 119(5): 1287-1296. 1992.
- Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79(7): 1209-1220. 1994.
- Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81(5): 769-780, 1995. (Cover)
- Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350): 519-526, 1998. (Cover)
- Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93(7): 1147-1158, 1998.
- Nonaka, S., Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, and N. Hirokawa. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6): 829-837, 1998.
- Okada, Y., and N. Hirokawa. A Processive Single-Headed Motor: Kinesin Superfamily Protein KIF1A. Science 283: 1152-1157, 1999.
- Setou, M., T. Nakagawa, D.H. Seog, and N. Hirokawa. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288(5472): 1796-1802, 2000. (Cover)
- Kikkawa, M., Y. Okada, and N. Hirokawa. 15 Angstrom Resolution Model of the Monomeric Kinesin Motor, KIF1A. Cell 100: 241-252, 2000.
- Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105(5): 587-597, 2001 (Cover)
- Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa. All kinesin superfamily protein, KIF, genes in mouse and human. P N A S 98(13): 7004-7011, 2001.
- Kikkawa, M., E.P. Sablin, Y. Okada, H. Yajima, R.J. Fletterick, and N. Hirokawa. Switch-based mechanism of kinesin motors. Nature (Article)411(6836): 439-445, 2001.
- Setou, M., D.-H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417(6884): 83-87, 2002.
- Homma, N., Y. Takei, Y. Tanaka, T. Nakata, S. Terada, M. Kikkawa, Y. Noda, and N. Hirokawa. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114: 229-239, 2003.
- Nitta, R., M. Kikkawa, Y. Okada, and N. Hirokawa. KIF1A alternately uses two loops to bind microtubules. Science 305: 678-683, 2004.
- Kanai, Y., N. Dohmae, and N. Hirokawa. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43: 513-525, 2004.
- Hirokawa, N. and R. Takemura. Molecular motors and mechanisms of directional transport in neurons. Nature Rev Neurosci 6: 201-214, 2005.
- Tanaka, Y., Y. Okada, and N. Hirokawa. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature (Article) 435:172-177, 2005.
- Hirokawa, N., Y. Tanaka, Y. Okada and S. Takeda. Nodal flow and the generation of left-right asymmetry. Cell 125(1): 33-45, 2006.
- Midorikawa, R., Y. Takei, and N. Hirokawa. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125: 371-383, 2006
- Guilaud, L., R. Wong and N. Hirokawa. Disruption of KIF17-Mint1 interation by CamKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nature Cell Biol 10 (1): 19-29, 2008.
- Niwa, S., Y. Tanaka and N. Hirokawa. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biol 11: 1269-1276, 2008.
- Hirokawa, N., Y. Noda, Y. Tanaka, and S. Niwa. Kinesin superfamily motor proteins and intracellular transport. Nature Rev Mol Cell Biol 10: 682-696, 2009. (Cover)
- Zhou, R. S. Niwa, N. Homma, Y. Takei, and N. Hirokawa. KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139: 802-813, 2009.
- Hirokawa, N., R. Nitta and Y. Okada. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nature Rev Mol Cell Biol 10: 877-884, 2009. (Cover)
- Hirokawa, N., S. Niwa and Y. Tanaka. Molecular motors in neurons: Transport mechanisms and roles in brain function, development and disease. Neuron 68: 610-638, 2010.
- Yin, X., Y. Takei, M. Kido and N. Hirokawa. Molecular motor is fundamental for memory and learning via differential support of synaptic NR2A.2B levels. Neuron 70: 310-325, 2011.
- Nakata, T., S. Niwa, Y. Okada, F. Perez, and N. Hirokawa. Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol 194: 245-255, 2011.
- Nakajima, K., X. Yin, Y. Takei, D-H. Seog, N. Homma, and N. Hirokawa. Molecular motor KIF5A is essential for GABA A receptor transport and KIF5A deletion causes epilepsy. Neuron 76: 945-961, 2012.
- Niwa, S., K. Nakajima, H.Miki, Y. Minato, D. Wang, and N. Hirokawa. KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23: 1167-1175, 2012. doi.org/10.1016/j.devcel.2012.10.016. (Cover)
- Yang, W., Y. Tanaka, M. Bundo, and N. Hirokawa. Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells. Dev Cell 31 (2): 202–214, 2014. DOI: https://dx.doi.org/10.1016/j.devcel.2014.08.028
- Ichinose, S., T. Ogawa, and N. Hirokawa. Mechanism of Activity-dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87: 1022–1035, 2015. DOI:10.1016/j.neuron.2015.08.008
- Tanaka, Y., S. Niwa, M. Dong, A. Farkhondeh, Li. Wang, R. Zhou, and N. Hirokawa. The molecular motor KIF1A transports the trkA neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90: 1215-1229, 2016
- Morikawa, Mo., Y. Tanaka, H-S. Cho, M. Yoshihara, and N. Hirokawa. The molecular motor KIF21B mediates synaptic plasticity and fear extinction by terminating Rac1 activation. Cell Rep 23: 3864-3877, 2018. https://doi.org/10.1016/j.celrep.2018.05.089
- Alsabban AH., Mo. Morikawa, Y. Tanaka, Y. Takei, and N. Hirokawa. Kinesin Kif3b mutation reduces NMDAR subunit NR2A trafficking and causes schizophrenia-like phenotypes in mice. EMBO J. 2019 Nov 20:e101090. doi: 10.15252/embj.2018101090. [Epub ahead of print]
- Iwata S.,Mo. Morikawa, Y. Takei, and N. Hirokawa. An activity-dependent local transport regulation via degeneration and synthesis of KIF17 underlying cognitive flexibility. Science Adv. 2020; 6:eabc8355(published on line: 16 Dec 2020)
- Yoshihara, S.Xu, Jiang, Mo. Morikawa,-----------and N. Hirokawa. Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Rep 35, 108971, April 13, 2021 https://doi.prg/10.1016/j. celrep.2021. 108971
- Morikawa ,M, N.U Jerath, T. Ogawa, Mo. Morikawa, Y. Tanaka, M.E. Shy,S. Zuchner, and N. Hirokawa. A neuropathy-associated kinesin KIF1A mutation hyperstabilizes the motor-neck interaction during the ATPase cycle. EMBO J. 2022 doi:10.15252/embj. 2021108899