The Japan Academy

Personal Information

 

Name

ANDO Tsuneya

 

Section

Section II, Fourth Subsection

Date of Election

2021/12/13

Speciality

Physics

Selected Bibliography

  1. Theory of quantum transport in a two-dimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong magnetic fields
    T. Ando and Y. Uemura, Journal J. Phys. Soc. Jpn., 36, 959–967 (1974). DOI[10.1143/JPSJ.36.959]
    Reprinted in Selected Papers in Physics, Vol. 195 (Silicon MOS Inversion Layers II), edited by S. Kawaji and Y. Uemura (Physical Society of Japan, 1977)
  2. Theory of quantum transport in a two-dimensional electron system under magnetic fields. II. Single-site approximation under strong fields
    T. Ando, Journal J. Phys. Soc. Jpn., 36 ,1521–1529 (1974). DOI[10.1143/JPSJ.36.1521]
  3. Theory of quantum transport in a two-dimensional electron system under magnetic fields. III. Many-site approximation
    T. Ando, Journal J. Phys. Soc. Jpn., 37, 622–630 (1974). DOI[10.1143/JPSJ.37.622]
  4. Theory of quantum transport in a two-dimensional electron system under magnetic fields. IV. Oscillatory conductivity
    T. Ando, Journal J. Phys. Soc. Jpn., 37, 1233–1237 (1974). DOI[10.1143/JPSJ.37.1233]
  5. Theory of oscillatory g-factor in an MOS inversion layer under strong magnetic fields
    T. Ando and Y. Uemura, Journal J. Phys. Soc. Jpn., 37, 1044–1052 (1974). DOI[10.1143/JPSJ.37.1044]
    Reprinted in Selected Papers in Physics, Vol. 195 (Silicon MOS Inversion Layers II), edited by S. Kawaji and Y. Uemura (Physical Society of Japan, 1977)
  6. Theory of cyclotron resonance line shape in a two-dimensional electron system
    T. Ando, Journal J. Phys. Soc. Jpn., 38, 989–997 (1975). DOI[10.1143/JPSJ.38.989]
    Reprinted in Selected Papers in Physics, Vol. 195 (Silicon MOS Inversion Layers II), edited by S. Kawaji and Y. Uemura (Physical Society of Japan, 1977)
  7. Theory of Hall effect in a two-dimensional electron system
    T. Ando, Y. Matsumoto, and Y. Uemura, Journal J. Phys. Soc. Jpn., 39, 279–288 (1975). DOI[10.1143/JPSJ.39.279]
    Reprinted in The Integral and Fractional Quantum Hall Effects, edited by C.T. Van Degrift, M.E. Cage, and S.M. Girvin (American Association of Physics Teachers, 1991) and in Selected Papers in Physics, Vol. 195 (Silicon MOS Inversion Layers II), edited by S. Kawaji and Y. Uemura (Physical Society of Japan, 1977)
  8. Density-functional calculation of sub-band structure in accumulation and inversion layers
    T. Ando, Journal Phys. Rev. B, 13, 3468–3477 (1976). DOI[10.1103/PhysRevB.13.3468]
    Reprinted in Selected Papers in Physics, Vol. 195 (Silicon MOS Inversion Layers II), edited by S. Kawaji and Y. Uemura (Physical Society of Japan, 1977)
  9. Mass enhancement and subharmonic structure of cyclotron resonance in an interacting two-dimensional electron gas
    T. Ando, Journal Phys. Rev. Lett., 36, 1383–1385 (1976). DOI[10.1103/PhysRevLett.36.1383]
  10. Inter-subband optical transitions in a surface space-charge layers on semiconductor surfaces
    T. Ando, Journal Z. Phys. B, 26, 263–272 (1977). DOI[10.1007/BF01312933]
  11. Stress effects on electronic properties of silicon inversion layers
    Y. Takada and T. Ando, Journal J. Phys. Soc. Jpn., 44, 905–913 (1978). DOI[10.1143/JPSJ.44.905]
  12. Electronic properties of a semiconductor superlattice. I. Self-consistent calculation of subband structure and optical spectra
    T. Ando and S. Mori, Journal J. Phys. Soc. Jpn., 47, 1518–1527 (1979). DOI[10.1143/JPSJ.47.1518]
  13. Minigap and transport in a two-dimensional electron system
    T. Ando, Journal J. Phys. Soc. Jpn., 47, 1595–1605 (1979). DOI[10.1143/JPSJ.47.1595]
  14. Electronic properties of a semiconductor superlattice. II. Low temperature mobility perpendicular to the superlattice
    S. Mori and T. Ando, Journal J. Phys. Soc. Jpn., 48, 865–873 (1980). DOI[10.1143/JPSJ.48.865]
  15. Effect of localization on the Hall conductivity in the two-dimensional system in strong magnetic fields
    H. Aoki and T. Ando, Journal Solid State Commun., 38, 1079–1082 (1981). DOI[10.1016/0038-1098(81)90021-1]
    Reprinted in a celebratory issue to commemorate 30 years of Solid State Communication [Solid State Commun., 88, 951–954, 1993. DOI[10.1016/0038-1098(93)90276-S]]
  16. Electronic properties of two-dimensional systems
    T. Ando, A. B. Fowler, and F. Stern, Journal Rev. Mod. Phys., 54, 437–672 (1982). DOI[10.1103/RevModPhys.54.437]
    Citation Classics Current Contents, Phys. Chem. Earth Sci. 28, No. 26, p. 20 (1988). It has been cited more than 1600 times.
  17. Self-consistent results for a GaAs-AlxGa1-xAs heterojunction. I. Subband structure and light-scattering spectra
    T. Ando, Journal J. Phys. Soc. Jpn., 51, 3893–3899 (1982). DOI[10.1143/JPSJ.51.3893]
    Reprinted in Selected Papers in Physics, Vol. 224 (Semiconductor Heterostructures and Superlattice), edited by H. Sakaki and T. Ando (Physical Society of Japan, 1984)
  18. Self-consistent results for a GaAs-AlxGa1-xAs heterojunction. II. Low temperature mobility
    T. Ando, Journal J. Phys. Soc. Jpn., 51, 3900–3907 (1982). DOI[10.1143/JPSJ.51.3900]
    Reprinted in Selected Papers in Physics, Vol. 224 (Semiconductor Heterostructures and Superlattice), edited by H. Sakaki and T. Ando (Physical Society of Japan, 1984)
  19. Electron localization in a two-dimensional system in strong magnetic fields. I. Case of short-range scatterers
    T. Ando, Journal J. Phys. Soc. Jpn., 52, 1740–1749 (1983). DOI[10.1143/JPSJ.52.1740]
  20. Electron localization in a two-dimensional system in strong magnetic fields. II. Long-range scatterers and response functions
    T. Ando, Journal J. Phys. Soc. Jpn., 53, 3101–3111 (1984). DOI[10.1143/JPSJ.53.3101]
  21. Electron localization in a two-dimensional system in strong magnetic fields. III. Impurity-concentration dependence and level-mixing effects
    T. Ando, Journal J. Phys. Soc. Jpn., 53, 3126–3135 (1984). DOI[10.1143/JPSJ.53.3126]
  22. Hole subband at GaAs/AlGaAs heterojunctions and quantum wells
    T. Ando, Journal J. Phys. Soc. Jpn., 54, 1528–1536 (1985). DOI[10.1143/JPSJ.54.1528]
  23. Finite-size scaling study of localization in Landau levels
    T. Ando and H. Aoki, Journal J. Phys. Soc. Jpn., 54, 2238–2249 (1985). DOI[10.1143/JPSJ.54.2238]
  24. Many-body effects on the luminescence spectrum of modulation-doped quantum wells
    G. E. W. Bauer and T. Ando, Journal Phys. Rev. B, 31, 8321–8324 (1985). DOI[10.1103/PhysRevB.31.8321]
  25. Localization in strong magnetic fields and quantum Hall effect
    T. Ando, Journal Prog. Theor. Phys. Suppl., 84, 69–96 (1985). DOI[10.1143/PTPS.84.69]
  26. Theory of band gap renormalization in modulation-doped quantum wells
    G. E. W. Bauer and T. Ando, Journal J. Phys. C, 19,1537–1551 (1986). DOI[10.1088/0022-3719/19/10/010]
  27. Scaling functions in quantum Hall effect
    T. Ando, Journal J. Phys. Soc. Jpn., 55, 3199–3211 (1986). DOI[10.1143/JPSJ.55.3199]
  28. Universality of quantum Hall effect: Topological invariant and observable
    H. Aoki and T. Ando, Journal Phys. Rev. Lett., 57, 3093–3096 (1986). DOI[10.1103/PhysRevLett.57.3093]
  29. Exciton mixings in quantum wells
    G. E. W. Bauer and T. Ando, Journal Phys. Rev. B, 38, 6015–6030 (1988). DOI[10.1103/PhysRevB.38.6015]
  30. Phonons in GaAs/AlAs superlattice
    T. Tsuchiya, H. Akera, and T. Ando, Journal Phys. Rev. B, 39, 6025–6033 (1989). DOI[10.1103/PhysRevB.39.6025]
  31. Numerical study of symmetry effects on localization in two dimensions
    T. Ando, Journal Phys. Rev. B, 40, 5325–5339 (1989). DOI[10.1103/PhysRevB.40.5325]
  32. Electron-optical phonon interaction in single and double heterostructures
    N. Mori and T. Ando, Journal Phys. Rev. B, 40, 6175–6188 (1989). DOI[10.1103/PhysRevB.40.6175]
  33. Connection of envelope functions at semiconductor heterostructures: I. Interface matrix calculated in simplest models
    T. Ando, S. Wakahara, and H. Akera, Journal Phys. Rev. B, 40, 11609–11618 (1989). DOI[10.1103/PhysRevB.40.11609]
  34. Connection of envelope functions at semiconductor heterostructures: II. Mixings of Γ and X in GaAs/AlGaAs
    T. Ando and H. Akera, Journal Phys. Rev. B, 40, 11619–11633 (1989). DOI[10.1103/PhysRevB.40.11619]
  35. Magnetoresistance in quantum wires: Boundary roughness scattering
    H. Akera and T. Ando, Journal Phys. Rev. B, 43, 11676–11685 (1991). DOI[10.1103/PhysRevB.43.11676]
    Reprinted in Selected Papers in Physics III: Mesocopic Systems, edited by A. Kawabata and K. Kawamura (Physical Society of Japan, 1994)
  36. Quantum point contacts in magnetic fields
    T. Ando, Journal Phys. Rev. B, 44, 8017–8027 (1991). DOI[10.1103/PhysRevB.44.8017]
  37. Electron-phonon interaction in GaAs/AlAs superlattices
    T. Tsuchiya and T. Ando, Journal Phys. Rev. B, 47, 7240–7252 (1993). DOI[10.1103/PhysRevB.47.7240]
  38. Valley mixing in short-period superlattices and interface matrix
    T. Ando, Journal Phys. Rev. B, 47, 9621–9628 (1993). DOI[10.1103/PhysRevB.47.9621]
  39. Electronic states of carbon nanotubes
    H. Ajiki and T. Ando, Journal J. Phys. Soc. Jpn., 62, 1255–1266 (1993). DOI[10.1143/JPSJ.62.1255]
    Outstanding Paper Award of Physical Society of Japan (1999).
  40. Magnetic properties of carbon nanotubes
    H. Ajiki and T. Ando, Journal J. Phys. Soc. Jpn., 62, 2470–2480 (1993). DOI[10.1143/JPSJ.62.2470] [Errata, Journal J. Phys. Soc. Jpn., 63, 4267–4267 (1994). DOI[10.1143/JPSJ.63.4267]
  41. Localization and fluctuations in quantum Hall regime
    T. Ando, Journal Phys. Rev. B, 49, 4679–4688 (1994). DOI[10.1103/PhysRevB.49.4679]
  42. Lattice instability in metallic carbon nanotubes
    N. A. Viet, H. Ajiki, and T. Ando, Journal J. Phys. Soc. Jpn., 63, 3036–3047 (1994). DOI[10.1143/JPSJ.63.3036]
  43. Quantum transport in antidot arrays in magnetic fields
    S. Ishizaka, F. Nihey, K. Nakamura, J. Sone, and T. Ando, Journal Phys. Rev. B, 51, 9881–9890 (1995). DOI[10.1103/PhysRevB.51.9881]
  44. Energy bands of carbon nanotubes in magnetic fields
    H. Ajiki and T. Ando, Journal J. Phys. Soc. Jpn., 65, 505–514 (1996). DOI[10.1143/JPSJ.65.505]
  45. Electronic states in antidot lattices: Scattering-matrix formalism
    S. Uryu and T. Ando, Journal Phys. Rev. B, 53, 13613–13623 (1996). DOI[10.1103/PhysRevB.53.13613]
  46. Excitons in carbon nanotubes
    T. Ando, Journal J. Phys. Soc. Jpn., 66, 1066–1073 (1997). DOI[10.1143/JPSJ.66.1066]
  47. Impurity scattering in carbon nanotubes – Absence of back scattering –
    T. Ando and T. Nakanishi, Journal J. Phys. Soc. Jpn., 67, 1704–1713 (1998). DOI[10.1143/JPSJ.67.1704]
  48. Two-component cyclotron resonance in quantum Hall systems
    K. Asano and T. Ando, Journal Phys. Rev. B, 58, 1485–1498 (1998). DOI[10.1103/PhysRevB.58.1485]
  49. Quantum transport in two-dimensional graphite system
    N. H. Shon and T. Ando, Journal J. Phys. Soc. Jpn., 67, 2421–2429 (1998). DOI[10.1143/JPSJ.67.2421]
  50. Berry's phase and absence of back scattering in carbon nanotubes
    T. Ando, T. Nakanishi, and R. Saito, Journal J. Phys. Soc. Jpn., 67, 2857–2862 (1998). DOI[10.1143/JPSJ.67.2857]
  51. Effective-mass theory of carbon nanotube junctions
    H. Matsumura and T. Ando, Journal J. Phys. Soc. Jpn., 67, 3542–3551 (1998). DOI[10.1143/JPSJ.67.3542]
  52. Effective-mass theory of carbon nanotubes with vacancy
    T. Ando, T. Nakanishi, and M. Igami, Journal J. Phys. Soc. Jpn., 68, 3994–4008 (1999). DOI[10.1143/JPSJ.68.3994]
  53. Spin-orbit interaction in carbon nanotubes
    T. Ando, Journal J. Phys. Soc. Jpn., 69, 1757–1763 (2000). DOI[10.1143/JPSJ.69.1757]
  54. Umklapp electron-electron scattering in weakly modulated two-dimensional electron systems
    S. Uryu and T. Ando, Journal Phys. Rev. B, 64, 195334-1–15 (2001). DOI[10.1103/PhysRevB.64.195334]
  55. Photoluminescence in integer quantum Hall systems
    K. Asano and T. Ando, Journal Phys. Rev. B, 65, 115330-1–12 (2002). DOI[10.1103/PhysRevB.65.115330]
  56. The Hall conductivity of two-dimensional graphite system
    Y. Zheng and T. Ando, Journal Phys. Rev. B, 65, 245420-1–11 (2002). DOI[10.1103/PhysRevB.65.245420]
  57. Phonons and electron-phonon scattering in carbon nanotubes
    H. Suzuura and T. Ando, Journal Phys. Rev. B, 65, 235412-1–15 (2002). DOI[10.1103/PhysRevB.65.235412]
  58. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice
    H. Suzuura and T. Ando, Journal Phys. Rev. Lett., 89, 266603-1–4 (2002). DOI[10.1103/PhysRevLett.89.266603]
  59. Presence of perfectly conducting channel in metallic carbon nanotubes
    T. Ando and H. Suzuura, Journal J. Phys. Soc. Jpn., 71, 2753–2760 (2002). DOI[10.1143/JPSJ.71.2753]
  60. Effective-mass theory of electron correlations in band structure of semiconducting carbon nanotubes
    H. Sakai, H. Suzuura, and T. Ando, Journal J. Phys. Soc. Jpn., 72, 1698–1705 (2003). DOI[10.1143/JPSJ.72.1698]
  61. Crossover between quantum and classical transport: Quantum Hall effect and carbon nanotubes
    T. Ando, Journal Physica E, 20, 24–32 (2003). DOI[10.1016/j.physe.2003.09.018]
  62. Excitons in carbon nanotubes revisited: Dependence on diameter, Aharonov-Bohm flux, and strain
    T. Ando, Journal J. Phys. Soc. Jpn., 73, 3351–3363 (2004). DOI[10.1143/JPSJ.73.3351]
  63. Theory of electronic states and transport in carbon nanotubes
    T. Ando, Journal J. Phys. Soc. Jpn., 74, 777–817 (2005) DOI[10.1143/JPSJ.74.777]
    Invited review paper
  64. Electronic intertube transfer in double-wall carbon nanotubes
    S. Uryu and T. Ando, Journal Phys. Rev. B, 72, 245403-1–10 (2005). DOI[10.1103/PhysRevB.72.245403]
    Invited review paper
  65. Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov-Bohm flux
    T. Ando, Journal J. Phys. Soc. Jpn., 75, 024707-1–12 (2006). DOI[10.1143/JPSJ.75.024707]
  66. Screening effect and impurity scattering in monolayer graphene
    T. Ando, Journal J. Phys. Soc. Jpn., 75, 074716-1–7 (2006). DOI[10.1143/JPSJ.75.074716]
    Outstanding Paper Award of Physical Society of Japan (2011).
  67. Optical phonon interacting with electrons in carbon nanotubes
    K. Ishikawa and T. Ando, Journal J. Phys. Soc. Jpn., 75, 084713-1–8 (2006). DOI[10.1143/JPSJ.75.084713]
  68. Weak-localisation magnetoresistance and valley symmetry in graphene
    E. McCann, K. Kechedzhi, V. I. Falko, H. Suzuura, T. Ando, and B. L. Altshuler, Journal Phys. Rev. Lett., 97, 146805-1–4 (2006). DOI[10.1103/PhysRevLett.97.146805]
  69. Exciton absorption of perpendicularly polarized light in carbon nanotubes
    S. Uryu and T. Ando, Journal Phys. Rev. B, 74, 155411-1–9 (2006). DOI[10.1103/PhysRevB.74.155411]
  70. Anomaly of optical phonon in monolayer graphene
    T. Ando, Journal J. Phys. Soc. Jpn., 75, 124701-1–5 (2006). DOI[10.1143/JPSJ.75.124701]
  71. Magnetic oscillation of optical phonon in graphene
    T. Ando, Journal J. Phys. Soc. Jpn., 76, 024712-1–7 (2007). DOI[10.1143/JPSJ.76.024712]
  72. Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation
    M. Koshino and T. Ando, Journal Phys. Rev. B, 76, 085425-1–11 (2007). DOI[10.1103/PhysRevB.76.085425]
  73. Cross polarized absorption in carbon nanotubes with Aharonov-Bohm flux
    S. Uryu and T. Ando, Journal Phys. Rev. B, 76, 115420-1–6 (2007). DOI[10.1103/PhysRevB.76.115420]
  74. Exotic electronic and transport properties of graphene
    T. Ando, Journal Physica E, 40, 213–227 (2007). DOI[10.1016/j.physe.2007.06.003]
    Selected as one of Physica E Top Cited Articles 2007 to 2011
  75. Optical phonon tuned by Fermi level in carbon nanotubes
    T. Ando, Journal J. Phys. Soc. Jpn., 77, 014707-1–9 (2008). DOI[10.1143/JPSJ.77.014707]
  76. Zone-boundary phonon in graphene and nanotube
    H. Suzuura and T. Ando, Journal J. Phys. Soc. Jpn., 77, 044703-1–11 (2008). DOI[10.1143/JPSJ.77.044703]
  77. Excitons in metallic carbon nanotubes with Aharonov-Bohm flux
    S. Uryu and T. Ando, Journal Phys. Rev. B, 77, 205407-1–9 (2008). DOI[10.1103/PhysRevB.77.205407]
  78. Excitonic two-photon absorption in semiconducting carbon nanotubes within an effective-mass approximation
    S. Uryu, H. Ajiki, and T. Ando, Journal Phys. Rev. B, 77, 115414-1–6 (2008). DOI[10.1103/PhysRevB.78.115414]
  79. Field effects on optical phonons in bilayer graphene
    T. Ando and M. Koshino, Journal J. Phys. Soc. Jpn., 78, 034709-1–8 (2009). DOI[10.1143/JPSJ.78.034709]
  80. Magnetic field screening and mirroring in graphene
    M. Koshino, Y. Arimura, and T. Ando, Journal Phys. Rev. Lett., 102, 177203-1–4 (2009). DOI[10.1103/PhysRevLett.102.177203]
  81. Weak-field Hall effect in graphene calculated within self-consistent Born approximation
    T. Fukuzawa, M. Koshino, and T. Ando, Journal J. Phys. Soc. Jpn., 78, 094714-1–7 (2009). DOI[10.1143/JPSJ.78.094714]
  82. Family effects on excitons in semiconducting carbon nanotubes
    T. Ando, Journal J. Phys. Soc. Jpn., 78, 104703-1–9 (2009). DOI[10.1143/JPSJ.78.104703]
  83. Environment effects on excitons in semiconducting carbon nanotubes
    T. Ando, Journal J. Phys. Soc. Jpn., 79, 024706-1–10 (2010). DOI[10.1143/JPSJ.79.024706]
  84. Anomalous orbital magnetism in Dirac-electron systems: Role of pseudo-spin paramagnetism
    M. Koshino and T. Ando, Journal Phys. Rev. B, 81, 195431-1–9 (2010). DOI[10.1103/PhysRevB.81.195431]
  85. Theory of electron scattering by lattice defects in graphene
    A. Toyoda and T. Ando, Journal J. Phys. Soc. Jpn., 79, 094708-1–9 (2010). DOI[10.1143/JPSJ.79.094708]
    Selected as one of Papers of Editors' Choice
  86. Theory of transport in graphene with long-range scatterers
    M. Noro, M. Koshino, and T. Ando, Journal J. Phys. Soc. Jpn., 79, 094713-1–7 (2010). DOI[10.1143/JPSJ.79.094713]
  87. Transmission through a boundary between monolayer and bilayer graphene
    T. Nakanishi, M. Koshino, and T. Ando, Journal Phys. Rev. B, 82, 125428-1–14 (2010). DOI[10.1103/PhysRevB.82.125428]
  88. Diamagnetism of graphene with long-range scatterers
    M. Noro, M. Koshino, and T. Ando, Journal J. Phys. Soc. Jpn., 80, 114701-1–9 (2011). DOI[10.1143/JPSJ.80.114701]
  89. Effective-mass theory of collapsed carbon nanotubes
    T. Nakanishi and T. Ando, Journal Phys. Rev. B, 91, 155420-1–16 (2015). DOI[10.1103/PhysRevB.91.155420]
  90. Theory of valley Hall conductivity in graphene with gap
    T. Ando, Journal J. Phys. Soc. Jpn., 84, 114705-1–12 (2015). DOI[10.7566/JPSJ.84.114705]
    Selected as one of Papers of Editors' Choice
  91. Theory of valley Hall conductivity in bilayer graphene
    T. Ando, Journal J. Phys. Soc. Jpn., 84, 114704-1–10 (2015). DOI[10.7566/JPSJ.84.114704]
  92. Weak-field Hall effect in graphene with long-range scatterers
    M. Noro and T. Ando, Journal J. Phys. Soc. Jpn., 85, 014708-1–13 (2016). DOI[10.7566/JPSJ.85.014708]
  93. Note on formula of weak-field Hall conductivity: Singular behavior for long-range scatterers
    T. Ando and H. Suzuura, Journal J. Phys. Soc. Jpn., 86, 014709-1–12 (2017). DOI[10.7566/JPSJ.86.014709]
  94. Formula of weak-field magnetoresistance in graphene
    T. Ando, Journal J. Phys. Soc. Jpn., 88, 014704-1–10 (2019). DOI[10.7566/JPSJ.88.014704]
    Selected as one of Papers of Editors' Choice.
  95. Weak-field magnetoresistance in graphene with long-range scatterers
    T. Ando, Journal J. Phys. Soc. Jpn., 88, 034701-1–9 (2019). DOI[10.7566/JPSJ.88.034701]
  96. Theory of weak-field magnetoresistance in bilayer graphene
    T. Ando, Journal J. Phys. Soc. Jpn., 88, 044707-1–9 (2019). DOI[10.7566/JPSJ.88.044707]
  97. Theory of magnetoresistance in two-dimensional giant Rashba systems
    T. Ando, Journal J. Phys. Soc. Jpn., 88, 054705-1–10 (2019). DOI[10.7566/JPSJ.88.054705]
  98. Magnetoresistance due to diamagnetic response in two-dimensional system
    T. Ando, Journal J. Phys. Soc. Jpn., 89, 124708-1–8 (2020). DOI[10.7566/JPSJ.89.124708]
  99. Theory of magnetoresistance in tellurene and related mini-gap systems
    T. Ando, Journal J. Phys. Soc. Jpn., 90, 044711-1–10 (2021). DOI[10.7566/JPSJ.90.044711]
  100. Crossover between positive and negative magnetoresistance in graphene: Roles of absence of backscattering
    T. Ando, Journal J. Phys. Soc. Jpn., 90, 044712-1–9 (2021). DOI[10.7566/JPSJ.90.044712]

(Other of the above: 341 article, as of January 19, 2022)