日本学士院

会員情報

 

氏名

西澤直子(にしざわ なおこ)

 

所属部・分科

第2部第6分科

選定年月日

令和2年12月14日

専攻学科目

植物栄養学

現職等

受賞等

〔国内〕

〔海外〕

 

外国アカデミー会員等

主要な学術上の業績

西澤直子氏は、世界に先駆けて、イネ科植物が持つ鉄栄養獲得とその制御の分子機構の全貌を明らかにしただけでなく、イネ科植物を越えて高等植物の分子レベルでの栄養学的研究に先導的な役割を果たしました。これらの基礎的知見をもとに、鉄を吸収しにくい土壌で栽培しても鉄欠乏にならず良好に生育する「鉄欠乏耐性イネ」を作出しました。同様に、ヒトの貧血症予防のための鉄分豊富なコメやダイズ、サツマイモを作出しました。また、健康に悪影響を与える有害元素のカドミウムを吸収しないイネの開発に尽力しました。世界各地で深刻となっているカドミウムによるコメの汚染問題の解決に貢献すると期待されます。

主要な著書・論文

<主要な総説及び著書>

  1. Nishizawa NK, Mori S. Direct Uptake of Macro Organic Molecules. In “Plant Nutrient Acquisition New Perspectives”, Springer-Verlag, Tokyo. Eds. Ae N, Okada K and Srinivasan A, pp 421-444 (2001)
  2. Kobayashi T, Nakanishi H, Nishizawa NK. Recent insights into iron homeostasis and their application in graminaceous crops. Proceedings of the Japan Academy-B, 86, 900-913 (2010)
  3. Kobayashi K, Nishizawa NK. Iron Uptake, Translocation, and Regulation in Higher Plants. Annual Review of Plant Biology, 63, 131-152 (2012)
  4. Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay Y-F, Sanders D. Using membrane transporters to improve crops for sustainable food production. Nature, 497, 60-66 (2013)

<主要な原著論文>

  1. Nishizawa NK, Mori S. Invagination of plasmalemma: Its role in the absorption of macromolecules in rice roots. Plant and Cell Physiology, 18, 767-782 (1977)
  2. Mori S, Nishizawa NK. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant and Cell Physiology, 28, 1081-1092 (1987)
  3. Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S. Biosynthesis of phytosiderophores: In vitro biosynthesis of 2'-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiology, 93, 1497-1503 (1990)
  4. Takahashi T, Gasch A, Nishizawa NK, Chua N-H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes and Development , 9, 97-107 (1995)
  5. Barnes S, Nishizawa NK, Quaggio R, Whitelam G, Chua N-H. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated changes in plastid development. Plant Cell, 8, 601-615 (1996)
  6. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology, 119, 471-480 (1999)
  7. Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiology, 121, 947-956 (1999)
  8. Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S. Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Molecular Biology, 44, 199-207 (2000)
  9. Zuo J, Niu Q-W, Nishizawa NK, Wu Y, Kost B, Chua N-H. KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell, 12, 1137-1152 (2000)
  10. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnology, 19, 466-469 (2001)
  11. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15, 1263-1280 (2003)
  12. Kobayashi T, Nakayama Y, Nakanishi Itai R, Nakanishi H, Yoshihara T, Mori S,Nishizawa NK. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant Journal, 36, 780-793 (2003)
  13. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant Journal, 39, 415-424 (2004)
  14. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Journal of Biological Chemistry, 43, 32395-32402 (2006)
  15. Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proceedings of the National Academy of Sciences of the USA, 104, 19150-19155 (2007)
  16. Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proceedings of the National Academy of Sciences of the USA, 104, 7373-7378 (2007)
  17. Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK. A novel transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. Journal of Biological Chemistry, 283, 13407-13417 (2008)
  18. Suzuki M, Morikawa CK, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Science and Plant Nutrition 54, 77-85 (2008)
  19. Inoue H, Kobayashi T, Nozoye N, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Journal of Biological Chemistry, 284, 3470-3479 (2009)
  20. Nozoye T, Nagasaka S, Kobayashi T, Takahashi, M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 286, 5446-5454 (2011)
  21. Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK. The rice mitochondrial iron transporter is essential for plant growth.Nature Communications, 2, 322 (2011)
  22. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Scientific reports, 2, 543 (2012)
  23. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports, 2, 286 (2012)
  24. Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low cadmium rice. Proceedings of the National Academy of Sciences of the USA, 109, 19166-19171 (2012)
  25. Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications, 4, 2792 (2013)
  26. Nozoye T, von Wiren N, Sato Y, Higashiyam T, Nakanishi H, Nishizawa NK. Characterization of the nicotianaine exporter ENA1 in rice.  Frontiers in Plant Science, 10, 502 (2019)

リンク