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Outline of the work:

Based on his critical examination of the traditional equilibrium-point-control hypothesis, Dr. 
Mitsuo Kawato proposed a new theory of cerebellar internal models—MOSAIC Theory, as a 
bidirectional theory of vision. He influenced the international neuroscience research field from the 
viewpoint of elucidating brain functions based on information processing and computational theory. 
In 2009, he succeeded in decoding brain information while recording brain activities from outside 
the head. Based on these studies, he developed a novel brain information technology, called the 
brain machine interface (BMI), so that people can control robots or home electrical devices just by 
their own thoughts. Furthermore, in 2011, he developed the “decoded neurofeedback (DecNef)” 
method with which people could induce desirable information in their brains without special 
physical training. DecNef is an innovative causal tool for human neuroscience that can lead to new 
therapies for psychiatric and neurological diseases, including depression and central chronic pain.

(1)  �Proposal of a cerebellar internal model theory and its experimental examination
An equilibrium-point-control hypothesis (or virtual-trajectory-control hypothesis) was a 

standard model for a neural mechanism for motor control. This hypothesis assumed that the brain 
sends just a mechanical equilibrium point to downstream neural and muscle systems, and that 
corresponding movements spontaneously and mechanically emerge. Dr. Kawato measured 
mechanical stiffness of human arms during movements, which he found rather small, and thus 
demonstrated the necessity of new internal models within the brain (Science, 1996) departing from 
the above hypothesis. He has developed a new theory regarding how internal models are acquired 
in the cerebellum, as a computational extension of the Marr-Ito-Albus theory of cerebellar 
functions. In his theory, the cerebellar cortex acquires internal models while executing movements 
several times based on the synaptic plasticity of Purkinje cells of the cerebellum, and while being 
guided by error signals carried by climbing fiber inputs. This motor learning allows animals to 
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execute desired movements more precisely as more experience accumulates. Later, mathematical 
analysis of the neural activities of monkey Purkinje cells supported the cerebellar internal model 
theory (Nature, 1993). Furthermore, this theory was supported by a functional MRI study of the 
human cerebellum while human subjects were learning to use new tools (Nature, 2000). By a series 
of theoretical and experimental studies, the internal model theory became a standard and major 
theory of motor control mechanisms. The MOSAIC Theory, further developed for explaining higher 
cognitive functions, including communications, led to the development of a bidirectional theory of 
vision. These computational neuroscience achievements by Dr. Kawato have profoundly influenced 
the neuroscience field.

(2)  �Implementation of learning algorithms on humanoid robots
The internal model theory was implemented on a humanoid robot with 30 degrees of freedom 

in the JST-ERATO Kawato Dynamic Brain Project. The robot learned more than 20 different tasks 
based on cerebellar internal model theory by watching and reinforcement learning. The 
demonstration attracted worldwide attention and created a new field of neurorobotics.

In 2008, with a new BMI system based on a regular internet connection, a humanoid robot in 
Kyoto successfully walked according to neuron firing recorded in the cerebral cortex of a walking 
monkey on the US east coast. This marks a fusion of neuroscience and network robotics.

(3)  �Development of brain machine interface (BMI)
In BMI, the brain activities of a user are measured in real time, and the decoded information 

allows the user to control machines and computers. In 2009, brain information was decoded, while 
the brain activity was recorded simultaneously by near-infrared spectroscopy (NIRS) and 
electroencephalograph (EEG) from outside the head. In collaboration with Honda and Shimadzu, 
Dr. Kawato demonstrated non-invasive BMI so that people can control robots or home electrical 
devices just by their own thoughts (natural thinking of movements or mental motor imagery). The 
revolutionary aspect of this BMI is to combine NIRS with high spatial resolution and EEG with 
high temporal resolution to attain a high accuracy in decoding.

(4)  �New pathways to novel therapies for psychiatric disorders
In 2011, Dr. Kawato developed the “decoded neurofeedback (DecNef)” method, with which 

people can induce desirable information in their brains without special physical training or 
conscious understanding of induced brain information. The method of fMRI voxel decoding 
(artificial intelligence technology) is used to estimate how close the brain activity patterns of a 
patient are to the desired pattern. This closeness measure is fed back online to the patient as a 
reward. The patient can learn to achieve specific patterns of brain activities in a prescribed brain 
area without conscious understanding (Science, 2011). DecNef is an innovative causal tool for 
human neuroscience that could lead to new therapies for psychiatric and neurological diseases, 
including depression and central chronic pain.
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