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Outline of the work:

Cellulose is the most abundant natural polymer, and it is one of the major plant components 
biosynthesized from atmospheric CO2. Prof. Akira Isogai has succeeded in preparing new cellulose nanofibers 
(CNFs), from plant celluloses that are completely nanodispersible in water. The CNFs were prepared by 
catalytic reaction under aqueous conditions, which is similar to enzymatic reactions in living bodies. The 
dispersion mechanism and surface nanostructures of the CNFs were clarified from various analytical data. 
The CNFs can be converted into versatile functional bulk materials and composites owing to the unique 
nanostructures and morphologies of the CNFs. Prof. Isogai has, therefore, taken a leadership role in the 
scientific field of nanocelluloses based on his great achievements through domestic and international 
collaborations.

Crystalline cellulose microfibrils are the smallest elements of terrestrial plants and they have widths of 
~3 nm and high aspect (i.e., length/width) ratios in plant cell walls. Each cellulose microfibril consists of 
20‒40 fully extended cellulose chains. Plant cellulose microfibrils coexist with non-crystalline hemicelluloses 
and lignin in cell walls at the molecular level. Such natural nanocomposite structures of plant cell walls inside 
plant living bodies allow plants to be resistant to weather, gravity, and biological attack. However, because 
cellulose microfibrils are tightly bound to each other through numerous hydrogen bonds in plant cell walls, 
individual cellulose microfibrils have not previously been separated and used as bio-nanofibers.

Prof. Isogai has investigated catalytic oxidation of cellulose using water-soluble and stable nitroxyl 
radicals under aqueous conditions (refs. 9, 30, and 31). When catalytic oxidation of plant cellulose fibers is 
performed, the oxidized celluloses maintain the original crystal structures, crystallinities, crystal sizes, and 
fibrous morphologies. Nevertheless, the sodium carboxylate content of the oxidized celluloses significantly 
increases by 170 times (refs. 4 and 9).

When the oxidized wood cellulose fibers are mechanically disintegrated in water, the fiber/water 
suspensions transform to transparent and highly viscous gels (refs. 4 and 9). Transmission electron and atomic 
force microscopy images show that the gels consist of nanofibers with homogeneous 3-nm widths and high 
aspect ratios, which originate from plant cellulose microfibrils. Therefore, Prof. Isogai was the first to prepare 
new CNFs from plant celluloses (refs. 4, 9, 30, and 31). Studies of the nanostructures and surface structures 
of the CNFs reveal that catalytic oxidation occurs position-selectively at the primary C6-hydroxy groups 
present on the crystalline cellulose microfibril surfaces, resulting in dense and regular formation of sodium 
C6-carboxylate groups on the cellulose microfibril surfaces (refs. 7 and 30).

All of the CNFs prepared from gymnosperm and angiosperm celluloses under optimum oxidation or 
nanofibrillation conditions have the same ~3-nm widths, irrespective of the plant species, which is 
scientifically interesting and also advantageous for use of CNFs as industrial nanomaterials (ref. 30). The 
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Young’s moduli and tensile strengths of the single CNF elements are high and similar to those of multi-walled 
carbon nanotubes (ref. 14). Such high mechanical strengths of the CNFs originate from their crystalline 
nanostructures consisting of fully extended cellulose chains with high molar masses. Therefore, CNFs are 
new and unique bio-nanofibers with high mechanical strengths, large specific surface areas, and characteristic 
surface nanostructures and morphologies.

The CNF elements have high and stable nanodispersibility in water because electrostatic repulsion 
efficiently occurs between the CNFs owing to their high surface-anionic charges in water. CNF hydrogels 
prepared from aqueous CNF gels are self-standing and highly stiff owing to the high mechanical strengths of 
the CNFs and their high aspect ratios. CNF aerogels prepared from the CNF hydrogels by supercritical drying 
are transparent and stiff, and they can be used as new bio-based super insulators (refs. 19, 24, 26, and 27). 
Because abundant sodium carboxylate groups are densely present on the crystalline CNF surfaces, versatile 
ion-exchange of sodium to other metal and alkylammonium counterions can be achieved as for efficient 
modification of the CNF surfaces under aqueous conditions. This ion-exchange allows improvement of the 
mechanical strength and oxygen-barrier properties of the CNFs under high humidity conditions, efficient 
switching of the hydrophilic/hydrophobic properties, and stable/biodegradable characteristics (refs. 18 and 
25). CNF-containing composites prepared using natural and synthetic polymers, carbon nanotubes, and metal 
nanoparticles have characteristic functionalities for practical applications (refs. 8, 12, 13, 15–17, 21, 22, and 
28).

Large CNF production plants are already operating according to the procedure developed by Prof. Isogai. 
Various CNF-containing products have been commercialized, such as diapers with super-deodorant 
properties, dispersants, thickeners, functional packaging films, and electronic devices (ref. 30). Qualitative 
and quantitative expansion of CNFs produced from abundant wood resources in the world may contribute to 
creation of a sustainable and environmentally friendly society based on renewable biomass resources, 
hopefully leading to prevention of global warming (ref. 30).
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