医学博士演 清君の「神経系の機能形態学、特に超高圧電子顕微鏡による定量的三次元構造解析」とに対する授賞審査要旨

浜君は、我が国の電子顕微鏡研究開拓者の一人であるが、その業績の基盤となっている思想は、機能を考えない形態学が心得ないということである。その研究は、「構造と機能の相関」、「三次元構造」への関心によって貫かれているが、現在までの業績を具体的に分類すると、「シンプラス構造の解析」の二つに大別することができる。

1) シンプラス構造の解析
浜君が最初に関心をもったのは、ニューロン間の情報伝達の場としてのシンプラス構造である。このような立場から、生理学的に無脊椎動物巨大神経の構造解析を行い、ザリガニ巨大神経シンプラスに代表される電気的シンプラスに特徴的な構造として、神経細胞間の「gap junction」（後のギャップ結合）を化学的シンプラスに対応するものとして、シンプラス前部における細胞の圧縮、シンプラス間隙的存在、及びシンプラス後部の細胞構造の存在を指摘した。前者はギャップ結合の発見として世界で最初のものである。

浜君が次に手がけたのは、中枢神経系モデルとしての聴・側線系である。聴・側線系は、振動あるいは変位受容
器としての有毛細胞、シナプス結合を示す求心性及び遠心性神経、及びグリア細胞に相当する支持細胞からなっており、浜君は有毛細胞上にシナプス結合する神経終末の構造、抑制系の遠心性神経に対応することを明らかにした。

なお、上記ギャップ結合の研究は浜君のライフワークの一つであるが、最近に至って免疫電子顕微鏡法を導入することによって大きな発展をとげた。即ち、ギャップ結合、GABA（抑制伝達物質）、およびバルバルプミン（カルシウム結合蛋白質）の三者、大脳辺緣系の一部である海馬の逐発特性の非鰭体細胞に共存していることが明らかとなったのである。この業績は、形態学的追求が新しい機能ユニットの存在を明らかにしたという点において、機能形態学上画期的な発見といえることができる。

中枢神経系を構成するニューロンとグリア細胞の絡まりあいは複雑微細に過ぎ、光学顕微鏡解像力の限界を越えることが必要であった。この欠陥は電子顕微鏡の導入により、その一部は克服されたが、高解像力を発揮するためには5000倍の超薄切片が必要となる。このような状況下に浜君が着目したのが、5000倍の切片を観察しうる超高圧電子顕微鏡である。浜君は、この新しい機器の開発に、生物学者としての立場から理工学専門家に多くの提言を行い、また自身でも種々基礎実験を行った後、ニューロンとグリア細胞の三次元微細構造解析の仕事を開始した。

このような手法による微細構造の立体観察により、新しいタイプのニューロン、エリマキ細胞（Grafted cell）を初めて見いだすことができた。
とし、種々の神経細胞の三次元微構造を明らかにすることができた。特に、小脳及び海馬面状回においてグリ
ル状・シート状の突起、あるいは木の葉様の小突起の拡がり、それらの突起とニューロンの細胞体、樹状突起との関
係、シナプス結合部とグリリア細胞突起との関係等が明らかとなった。

三次元における定量化のためには、試料傾斜面の正確なコントロール、特殊な試料ステージの開発、コンピュータ
による立体像解析のためのプログラム等が要求される。このような一連の準備も、すべて浜君の指導の下に行われた。

最初の応用問題として取り上げたのが、シナプス結合の場において重要な意味を有するスパイク（繊突起）の定
化である。スパイクは、記憶や可塑性という観点から最近注目されている構造であるが、本研究により従来
観察に基づく数の約1～6倍のスパイクの存在が示され、樹状突起形質膜の表面積がスパイクの存在によって、約
二倍になっている事が判明した。

生命科学の中心の一つとしての脳科学研究に、脳機能の形態的基盤の確立が前提になる。浜君はその研究に
深い関心を抱いており、X線顕微鏡、レーザー顕微鏡、トンネル顕微鏡等について、物理工学専門家と提携、その
実用化について模索を続けている。

K. Hama. Fine structure of the different synapses and gap junctions on the sensory hair cell in the

11. K. Hama. Gap junctions between hair cells and supporting cells in the goldfish's secular macula. A

10. K. Hama and K. Saito. Fine structure of the different synapses of the hair cells in the secular

9. K. Hama and K. Saito. Gap junctions between the supporting cells in some acoustico-vestibular re-

8. K. Hama and Y. Yamada. Fine structure of the olfactory receptor of the goldfish. II. The lateral line canal

6. K. Hama and K. Saito. Some observations on the fine structure of the subsurface cilium in the hair

5. K. Hama and K. Saito. Tubular network in the sensory hair cell of the secular macula of the gold-

4. Y. Yamada and K. Hama. Fine structure of the lateral-line organ of the common eel, Anguilla

40.
RES. 72 : 369-370, 1988

A. Salo and K. Haman. Epithelial cells on the organ of Corti in the guinea pig cell Tissue Res. 1982.

87, 1989.